
REPRINT

D
E

PA

RTMENT OF THE NAV
Y

N
AVA

L RESEARCH LABORATO
R

Y
A Classical Automata Approach to Noninterference Type Problems

Ira S. Moskowitz and Oliver L. Costich

FROM:
Proceedings of the Computer Security Foundations Workshop 5, Franconia, NH, June 1992, pages 2-8, IEEE
Press.

CONTACT:
Ira S. Moskowitz, Information Technology Division, Mail Code 5543, Naval Research Laboratory, Washington,
DC 20375.

Oliver L. Costich, Information Technology Division, Contractor-Mail Code 5542, Naval Research Laboratory,
Washington, DC 20375.

E-MAIL:
moskowit@itd.nrl.navy.mil
costich@itd.nrl.navy.mil

A Classical Automata Approach to Noninterference Type Problems

Ira S. Moskowitz Oliver L. Costich�

Center for Secure Information Technology Center for Secure Information Systems

Code 5543 George Mason University

Naval Research Laboratory Fairfax, VA 22030

Washington, DC 20375-5000

Abstract

Using classical automata theory we show how nonin-
terference can be viewed as a relatively simple phe-
nomenon. We also give direction for future work con-
cerning probabilistic security problems using classical
automata theory.

1 Introduction

Many models have been proposed to model a secure
computer system. Some of the representative early
models are by Harrison et al [10], Denning [4], and the
often mentioned Bell-LaPadula model [3]. Depending
on how one interprets concepts such as \subject/user"
and \object" it is not clear whether or not covert chan-
nels are taken into consideration in these models.

Noninterference [6, 7] was a concrete approach at pre-
venting improper information ow in a deterministic
system. Nondeducibility [21] was a more abstract at-
tempt at looking at possible non-secure information
ow in a secure system, i.e., a covert channel. Restric-
tiveness [12, 13] was ostensibly developed as a non-
deterministic analog of noninterference to repair pur-
ported problems involved with \hooking up" secure
systems. Probabilistic interference [8] arose to analyze
situations in nondeterministic systems that could be
interpreted probabilisticly. FM [15] and its successors
[9] are other attempts to understand information ow
via probability theory. Also, several authors (including
these) have used probability theory to analyze covert
channels via information theory.

Moskowitz previously investigated probabilistic chan-
nels using a technique similar to that for �bre bun-
dles [17] to try to get a better theoretical handle on
problems dealing with restrictiveness and probability.
In this paper we propose a simpler model for under-
standing information ow. We use the techniques of
classical automata theory, as �rst explicated by Rabin
and Scott [19], to set up our model. To quote from the
NCSC Integrity report [5, p. 75], \A signi�cant ad-
vantage of having the model based on a standard no-

�Supportedby the Naval Research Laboratory under contract

N0001489-C-2389.

tion like the automaton is that extensive literature and
well-developed intuition become immediately applica-
ble to the problem domain." Many of the non-standard
state machine models used in previous models of com-
puter security are rather complicated, and, we believe,
unnecessarily so. Nature is not always beautiful, but
most of the time it is. This is not to say that these
models are incorrect or useless. On the contrary, they
might be more useful, in certain cases, than what we
propose when trying to apply the theory to actual sit-
uations. Our contention is that they are more than
what is needed to understand the basic properties.

The descriptive power of the model that we describe
in this paper is its ease of expression and its ability to
capture deterministic, nondeterministic, and hopefully
probabilistic situations in one simple model. Hopefully,
this will be a useful tool for reasoning about security
(to paraphrase McLean [14]). We feel that our deter-
ministic model is the correct model for noninterference
type properties. The nondeterministic model, that we
construct in the manner of classical automata theory,
is not the same as that for restrictiveness, as in [13].
An advantage of our models is that the nondetermin-
istic model contains the deterministic one as a special
case.

One beauty of classical automata theory is the way
complex systems can be represented by a very simple
model. One does not need to worry about outputs or
internal events. If the automaton is carefully de�ned
one need only concern oneself with inputs and the state
changes that they induce. As shown in Arbib [1] we can
always include outputs as part of the state of the sys-
tem. Any internal events are in fact caused by earlier
input taking the system to a certain state. We will ex-
pand on these ideas later in the paper. We note that
Jacob, by using a category theoretic approach [11], has
also expressed noninterference in a compact form.

2 Automata Theory

Our notation will roughly follow that of Bavel [2].
Given a �nite set �, let �� be the free monoid over
�. In other words �� is made up of all �nite se-
quences (called strings or words) from elements of �.

2

The empty sequence is denoted by � and acts as the
multiplicative identity. The multiplication is given by
concatenation.

De�nition 1 An automaton is a triple A = (S;�; �),
where
(1) S is a �nite set (of states)
(2) � is a nonempty �nite set (the input alphabet)
(3) � : S��� ! S is a (transition) function satisfying
8s 2 S and 8x; y 2 ��, �(s; xy) = �(�(s; x); y) and
�(s; �) = s, where � is the null sequence in ��.

Notice that there is no mention of outputs in this de�-
nition. Some authors also include an initial state and a
set of accepting (or �nal) states. Accepting states are
not of interest to us here because we are not explicitly
concerned with what languages the automaton recog-
nizes. We are only concerned with observable state
changes. Initial states will be discussed later.

We will �rst briey discuss outputs and then see that
they are not necessary.

De�nition 2 An automaton with outputs is the 5-

tuple M = (S;�; �; Y; �), where S;�, and � are as in
Def. 1. The set Y is referred to as the set of outputs
and � is the output function � : S ��! Y .

Notice that the output is determined solely by the in-
put and state. Also note that in this de�nition the
output function does not change the state of the sys-
tem. (This de�nition can be modi�ed to look at output
strings (or traces) by rede�ning � so that 8s 2 S and
8x; y 2 ��, �(s; xy) = �(s; x)�(�(s; x); y) .) It is the
e�ect of inputs that concerns us. Modeling the outputs
is superuous as we shall see.

In [1] Arbib describes a state-output machine, which
negates the necessity of our worrying about outputs as
long as we choose our states properly.

De�nition 3 An automaton with outputs is a
state-output machine if 9� : S ! Y such that � = ���.

The function � need not always exist. It depends
on how the system arrived at the state in question.
In other words we may have an automaton with out-
puts such that �(s1; x1) = y1; �(s0

1
; x0

1
) = y0

1
, and

�(s1; x1) = �(s0
1
; x0

1
), but y1 6= y0

1
. The function � does

not exist in this case. The essence of � is that it at-
taches to the state s the output that goes along with
it that resulted from an input taking a previous state
into s.

It is an important fact that every automaton with out-
put can be viewed as a state-output machine. To

do this we replace every state s by the set Ŝ =
f[s; y] j 9s0 2 S; 9x 2 �, such that �(s0; x) = s and
�(s0; x) = yg. Accordingly, we can de�ne a new � and

�, denoted by �̂ and �̂, respectively by �̂([s; y]; x) =

[�(s; x); �(s; x)] and �̂([s; y]; x) = �(s; x). The function

� in this case maps [s; y] ! y. Thus we may replace

the entire set S by Ŝ, where Ŝ is all such [s; y] and use

�̂ and �̂. The important fact to keep in mind is that
the input alphabet has not changed nor has the way
inputs transition states really changed. This only �ne-
tunes the transitions to include the outputs along with
the state changes. Due to this we view all automata
with outputs as state-output machines (via the above
construction). However, in a state-output machine the
information about � is superuous because the outputs
are incorporated into the states. That is, we need not
consider the output function in reasoning about the se-
curity of such systems, since knowing the current state
embodies knowing the current output.

The above justi�es our use of automata as a model
for our computer system. We do not have outputs or
internal events causing state transitions, as do McCul-
lough and others. This is because internal events and
outputs are caused by inputs. In our thinking the sys-
tem starts in a benign (not necessarily unique) initial
state and inputs move it out of this initial state. Out-
puts arise from inputs and internal events are caused
by previous input moving the system into a state that
is prepared to transition to yet another state. One
can consider the next state from an input which trig-
gers internal events as the sequences of states passed
through, which can be represented as a single state in
our model. (We address models that view each inter-
nal transition as a separate state in the digression at
the end of section 4.)

We do not model the time between state transitions.
Our model only allows us to talk about before and
after with respect to state transitions, and our previous
comments show that this is su�cient for our present
purposes. For security our concern is can high inputs
a�ect what low \sees". We are certainly not the �rst to
be concerned with this issue. However, an aim of our
model is to make the security issues more transparent
and amenable to many kinds of analysis.

3 Carpe States

An assumption that must be made clear is exactly how
Low \sees the states". A state is a vector of variable
values. The values of the variables determine what
state the system (automaton) is in. These variables,
the objects of the secure system, are designated either
low or high. The high user (High) knows the value
of the entire state vector, whereas the low user (Low)
knows only the values of the low variables. In other
words, Low does not see complete states and there-
fore cannot distinguish between states which di�er only
in the values of the high variables. This corresponds
to McCullough's treatment of states. Note that our
states, by assumption of the state-output construction
discussed in the previous section, include the outputs
as state variables. Hence Low, in a sense, can see
the low outputs while High can see all of the outputs.
Of course implicit is that the users are able to deter-
mine the values of the appropriate variables by some

3

assumed means.

Our systems are input total. This is reected math-
ematically by having � de�ned as a function, not a
partial function. The transition function has as its do-
main S���. Any state and any input result in another
(possibly the same) state. We view the automaton as
starting in an initial state with all of the high variables
\zeroed out". We would not want the automaton to
start in an initial state whose high variables contained
the instruction \after the next three low inputs
do something to the low state variables". We
need a secure beginning for the system. We need this to
make sure that only inputs along with possibly prior
low information already in the system can inuence
where the system is going. Our security concern be-
comes high inputs cannot a�ect the low state variables.
We will make this precise later in the paper. Below
is our de�nition for security, which is, of course, simi-
lar to Goguen and Meseguer's de�nition of noninterfer-
ence [6, 7] and McCullough's state based de�nition of
restrictiveness [12]. Elements of � in our model corre-
spond to user-command pairs of Goguen andMeseguer,
i.e., � = U �C where U = users and C = commands.

4 Deterministic Secure System Model

De�nition 4 We say that an automaton is
double level if there are two and only two users desig-
nated as High and Low, and that the inputs come from
either High or Low, but not both.

We will assume for the rest of the paper that all of
our automata are double level. We refer then to the
inputs as low or high inputs. Notice then that � is the
disjoint union of �L (the low inputs) and �H (the high
inputs).

De�nition 5 We say that s0 is a secure initial state if
no high inputs have yet been entered into the machine.

In other words, a state is a secure initial state if no high
information has yet a�ected the high state variables.

De�nition 6 Given s1; s2 2 S we say that s1 and s2
are equivalent, written s1 � s2, i� the low state vari-
ables of s1 and s2 have the same values.

This is obviously an equivalence relation on S and we
may form the quotient set S=� and the quotient (or
projection) map � : S ! S=� .

De�nition 7 De�ne F : �� ! ��L ; by F (w) =
F (x1) � � �F (xn), where w = x1 � � �xn and each xi 2
� [f�g, and

F (xi) =

�
xi if xi 2 �L
� if xi 2 �H [f�g :

Note that F is an onto homomorphism of free monoids
and that F restricted to ��L is just the identity map.
In fact F is just the purge map discussed by others
[22]. All of this leads us to a de�nition of a Secure
Deterministic Automaton (SDA).

De�nition 8 (SDA) Given a system represented by
both an automaton A = (S;�; �) and a secure initial
state s0, we say that the system is a Secure Determin-
istic Automaton if:

(1) The map ~� : S=� � ��L ! S=�, given by
~�([s]; wL) = [�(s; wL)], where [s] 2 S=� and wL 2 ��L,
is well-de�ned.
(2) The following diagram, referred to as the Deter-
ministic Security Diagram (DSD) is commutative -

??
-

-

S=�

S

S=� ���L

S � ��

� � F �

�

~�
Let us analyze the DSD to see why we require such

a de�nition for security. First of all, the map ~� must
be well-de�ned for a system to be secure. Suppose
that s1 � s2, i.e., [s1] = [s2]. If �(s1; wL) 6� �(s2; wL)
then Low can tell, by inputting wL, that s1 and s2
are di�erent elements of S. This is a security violation
for then Low would have more information than just
the values of the low state variables! It is possible
that High could manipulate the automaton into state
s1 or s2 through a series of (not necessarily consecutive)
inputs. This would allow a covert channel to be opened
up between High and Low. Therefore [�(s1; wL)] =
[�(s2; wL)] is a requirement.

Secondly, the diagram must commute. Since F re-
stricted to ��L is the identity map the only way that
the diagram could not commute would involve an ele-
ment of xH 2 �H and an s 2 S such that �(s; xH) 6�
�(s; �) = s. If High inputs can a�ect the equivalence
class of a state then Low will know that High input
something. Therefore this cannot be allowed.

The DSD also satis�es the Bell-LaPadula condition
which forbids reads up and writes down. The no read
up policy is enforced by the fact that Low has knowl-
edge only of the Low state variables. Since we are not
concerned with aggregation [16] problems all high in-
formationmust come from high input. Since high input
is not allowed to change low state variables and we

4

started in a secure initial state no write down is also
enforced.

Digression: Implicit in our construction of the automa-
ton and description of the state variables is that the
users do not see any of the intermediate processing of
the state transitions. If intermediate states were in
fact visible states to the users then internal transitions
might be a problem in our model. Of course then �
would have to be modi�ed to be a partial function and
we would lose input totality. This is not a serious prob-
lem however, since a system with a partial function �
can be represented as a particular kind of nondeter-
ministic automaton. We will see that these are behav-
iorally equivalent to (input total) deterministic ones.
End of Digression

4.1 Unwinding

In the spirit of Goguen and Meseguer [7] we will exam-
ine an unwinding theorem.

Theorem 1 A system is a SDA i� the DSD holds (is
well-de�ned and commutes) with �� and ��L replaced
by � and �L [� , respectively.

Proof: Note that the map F never increases the length
of strings.
(Holds with �) holds without �) Trivial.
(Holds with � (holds without �) This is a straight-
forward induction proof which we show only for com-

mutativity. The fact that ~� is well-de�ned follows in a
similar (and simpler) fashion.
(a) - Commutativity holds for strings of length up to
1. This follows from the assumptions.
(b) - Assume commutativity holds for strings of length
up to n� 1. This is the induction hypothesis.
(c) - We show commutativity holds for strings of length
n. Say w 2 �� and w = x1 � � �xn�1 � xn, where
each xi 2 �. Following the DSD diagram from
the top to the right we have that (s; x1 � � �xn�1 �

xn)
�
! �(s; x1 � � �xn�1 � xn)

�
! [�(s; x1 � � �xn�1 � xn)].

We have to follow the diagram from the left to the
bottom and see if we get the same thing. Hence,

(s; x1 � � �xn�1 � xn)
��F
! ([s]; F (x1) � � �F (xn�1) �

F (xn))
~�
! [�(s; F (x1) � � �F (xn�1) � F (xn)]. So we

now need to show that

�(s; F (x1) � � �F (xn�1)�F (xn)) � �(s; x1 � � �xn�1�xn):
(1)

By the de�nition of � we see that �(s; x1 � � �xn�1�xn) =
�(�(s; x1 � � �xn�1); xn) and �(s; F (x1) � � �F (xn�1) �
F (xn)) = �(�(s; F (x1) � � �F (xn�1)); F (xn)) .
By step (b) of the induction we are assuming that
�(s; F (x1) � � �F (xn�1)) � �(s; x1 � � �xn�1) . There-
fore we may apply step (a) of the induction to get equa-
tion (1) above.

5 Nondeterminism

McCullough looked at nondeterministic systems when
he de�ned restrictiveness, though his model is compu-
tationally di�erent that ours. Our model easily gen-
eralizes to the nondeterministic case in the spirit of
classical automata theory. We use the notation }(X)
for the power set of X.

De�nition 9 A nondeterministic automaton is a
triple A = (S;�; �), where
(1) S is a �nite set (of states)
(2) � is a �nite nonempty set (the input alphabet)
(3) � : S��� ! }(S) is a (transition) relation satisfy-
ing 8s 2 S and 8x; y 2 ��, �(s; xy) = [f�(s0; y) j s0 2
�(s; x)g and �(s; �) = s, where � is the null sequence in
��.

In other words given a state s and a word w,
�(s; w) is a subset of S. The transition rela-
tion �(s; w) can be thought of as a set of triples
f(s; w; s1); (s; w; s2); � � � ; (s; w; sn)g. Each si is a state
to which the automaton might transition, given that
the automaton is presently in state s and w is the input
string. We can, as before, obtain a security diagram by
replacing S by }(S) and generalizing the equivalence
relation �.

De�nition 10 If A;B 2 }(S) we say that A is equiva-

lent to B, written A � B, i� for each siA 2 A 9s
j
B 2 B

such that siA � s
j
B and visa versa. Where �, with re-

spect to states, is as before in the deterministic case.

All we are doing is extending the de�nition of � so
that instead of state equivalence we can also talk about
equivalent subsets of S. We use � for both relations,
letting context be the arbiter. Since � is an equivalence
relation on }(S), we can de�ne the quotient set }(S)=�
and the quotient mapping }(�) : }(S) ! }(S)=�.

Theorem 2 There is a 1-1 and onto mapping between
}(S)=� and }(S=�).

Proof: The map � induces a map �� : }(S) ! }(S=�)
as follows. If A 2 }(S); A = fa1; � � � ; ang then ��(A) =
f[ai1]; � � � ; [aim]g, where aij 2 A and each ak 2 A is
equivalent to one and only one of the aij . This map is
clearly onto.

Suppose A � B, (in other words [A] = [B] as elements
of }(S)=�), where A = fa1; � � � ; ang and B =
fb1; � � � ; bmg. Consider [s] 2 ��(A). Then there is an
ak � s, ak 2 A such that 9bj 2 B such that [ak] =
[bj]. Therefore [s] = [ak] = [bj] 2 ��(B). Similarly
we can show that ��(B) � ��(A). We conclude that
��(A) = ��(B). Hence we can \push" the map �� down
to }(S)=� and induce a map � which is well-de�ned.

5

?

-

�
�
�
�
�
�
�
�
�
�
�
��

}(S=�)}(S)

}(S)=�

��

}(�) �

Suppose that ��(A) = ��(B). Then given s 2 A 9s0 2 B
for which s0 � s and visa versa. Hence [A] = [B],
therefore � is 1-1. Since �� is onto so is �.

Because of this mapping we can freely interchange be-
tween }(S)=� and }(S=�) througout the rest of the
paper.

Example
A = fs1A; s

2

A; s
3

A; s
4

Ag, B = fs1B ; s
2

B ; s
3

Bg, s
1

A � s4A �

s2B � s3B , and s2A � s3A � s1B . So A � B and [A] =
f[s1A]; [s

2

A]g.

As in the deterministic case we have the well known
paradigm that a high input should not change the state
to a nonequivalent state. Also Low should not be able
to distinguish between subsets of }(S)=�. In the deter-
ministic case our concern was with equivalence classes
of elements. Now in the nondeterministic case we have
to be concerned with sets of equivalence classes.

Example
Consider the states a; b; b0; c; c0; d; d0; e; e0 2 S such that
b � b0; c � c0; d � d0; but e 6� e0. Consider w 2 ��L ;

w = x1Lx
2

L. Suppose x
1

L can take a to either b; b0; c or
c0; and x2L can take b to d and c to e, and x2L can take
b0 to d0 and c0 to e0. On the quotient level Low sees
two di�erent possible transition scenarios

f[a]g
x1L
! f[b]; [c]g

x2L
! f[d]; [e]g or

f[a]g
x1L
! f[b0]; [c0]g

x2L
! f[d]; [e0]g.

The above example is certainly not good from a se-
curity point of view. Low can know that there is a
di�erence between f[b]; [c]g and f[b0]; [c0]g because the
same input string takes one to non-equivalent states.
This in turn means that the sequence of states passed
through must be di�erent. But they were supposed to
be equivalent to the low user.

From our above discussion and example we see that
the analog of SDA to the nondeterministic case is the
following:

De�nition 11 (SNA) Given a nondeterministic sys-
tem represented by both a nondeterministic automaton
A = (S;�; �) and a set of secure initial states S0, we
say that the system is a Secure Nondeterministic Au-
tomaton (SNA) if:

(1) The map ~� : S= � � ��L ! }(S)= �, given

by ~�([s]; wL) = [f�(s; wL)g], where [s] 2 S= � and
wL 2 ��L, is well-de�ned.
(2) The following diagram, referred to as the Nonde-
terministic Security Diagram (NSD) is commutative -

??
-

-

}(S)=�

}(S)

S=� ���L

S � ��

� � F }(�)

�

~�
Of course we get a similar version of the unwinding
theorem for the nondeterministic case.

Theorem 3 A system is a SNA i� the NSD holds (is
well-de�ned and commutes) with �� and ��L replaced
by � and �L [� , respectively.

Proof: Follows just as in the deterministic case.

Of course every deterministic system is a special case
of a nondeterministic system, i.e., the transitions map
into the singleton subsets of }(S). Hence, the above
de�nition of NSA actually includes DSA as a special
case. Hence, we can see then how noninterference gen-
eralizes in the nondeterministic case.

Finally, we note that the subset construction of Rabin
and Scott [19] can be applied to the nondeterministic
systems presented here. Given a SNA, A = (S;�; �)
with a set of initial states S0, we can de�ne a SDA,
}(A) = (}(S);�; }(�)) with initial state S0 by de�ning
}(�) : }(S) � �� ! }(S) by }(�)(B; x) = [f�(b; x) j
b 2 Bg for x 2 � and using a recursive de�nition to
extend }(�) to ��. It is well known that the resulting
SDA }(A) completely mimics the behavior of A with
respect to state transitions and sets of input strings.
For systems with output or accepting states this be-
havior is also captured. We state without proof:

Theorem 4 Every SNA is behaviorally equivalent to
an SDA with the same input set ��.

Corollary: The requirement of input totality for SDA's
can be removed with no loss of generality in the model.

6

Proof: Let A = (S;�; �) be an SDA except that � : S�
�! S is a partial function. Construct }(A) and notice
that }(�), when restricted to f(fsg; x) j s 2 S; x 2 �g
yields either a singleton or the empty set. Thus }(A)
has the same behavior as the given SDA with partial
transition function �. Moreover, }(A) has the same
behavior as a deterministic, input total machine.

6 Future Work

We believe that the commutative diagram approach
that we started in [17] and continued here can give a
simple model for detecting probabilistic channels. In
fact, the NSD diagram should have the obvious ana-
log in the probabilistic case. By this we mean a covert
channel that arises by High and Low knowing the prob-
abilities associated with nondeterministic transitions.
Of course this all boils down to Shannon's [20, 18]
analysis of discrete noisy channels. We feel, similar
to McLean [15], that a simple conditional probability
statement should su�ce to show that the bandwidth
of the probabilistic channels is zero. Of course we feel
that only input strings need to be considered in the
conditional probabilities. Gray [9] has looked at similar
ideas but his model involved more complex alphabets
than just input strings; however, as we have discussed
we feel that modeling in this detail is too complex. For
an abstract tool, we feel that an Ockham's razor ap-
proach is the most fruitful.

We also plan to discuss various compositions of SDA's
and timing channels in future research.

Acknowledgements

We wish to thank Myong Kang, John McDermott,
John McLean, and an anonymous referee for their help-
ful comments.

References

[1] Michael A. Arbib. Theories of Abstract Automata.
Prentice-Hall, Englewood Cli�s, NJ, 1969.

[2] Zamir Bavel. Introduction to The Theory of Au-
tomata. Reston, Reston, VA, 1983.

[3] D.E. Bell and L.J. La Padula. Secure Computer
System: Uni�ed Exposition and Multics Interpre-
tation, MTR-2997. MITRE Corp., Bedford, MA,
March 1976.

[4] Dorothy E. Denning. A lattice model of secure
information ow. Communications of the ACM,
19(5):236{243, May 1976.

[5] Department of Defense, National Computer Se-
curity Center. Integrity in Automated Informa-
tion Systems, C Technical Report 79-91, Septem-
ber 1991.

[6] Joseph A. Goguen and Jos�e Meseguer. Security
policies and security models. In Proc. of the 1982
IEEE Computer Society Symposium on Computer

Security and Privacy, pages 11{22, Oakland, CA,
1982.

[7] Joseph A. Goguen and Jos�e Meseguer. Unwind-
ing and inference control. In Proc. of the 1984
IEEE Computer Society Symposium on Computer
Security and Privacy, pages 75{86, Oakland, CA,
1984.

[8] James W. Gray, III. Probabilistic interference. In
Proc. of the 1990 IEEE Computer Society Sympo-
sium on Research in Security and Privacy, pages
170{179, Oakland, CA, May 1990.

[9] James W. Gray, III. On information ow security
models. In Proc. of the 1991 Workshop on Com-
puter Security Foundations, pages 55{60, Franco-
nia, NH, 1991.

[10] Michael A. Harrison, Walter L. Ruzzo, and Jef-
frey D. Ullman. Protection in operating systems.
Communications of the ACM, 19(8):461{471, Au-
gust 1976.

[11] Jeremy Jacob. Categorising non-interference. In
Proc. of the 1990 Workshop on Computer Security
Foundations, pages 44{50, Franconia, NH, 1990.

[12] Daryl McCullough. FOUNDATION
OF ULYSSES: The Theory of Security, Interim
Report RADC-TR-87-222. Odyssey Research As-
sociates, Inc., Ithaca, NY, July 1988.

[13] Daryl McCullough. A hookup theorem for mul-
tilevel security. IEEE Transactions on Software
Engineering, 16(6):563{568, June 1990.

[14] John McLean. Reasoning about security mod-
els. In Proc. of the 1987 IEEE Computer Society
Symposium on Research in Security and Privacy,
pages 123 { 131, Oakland, CA, April 1987.

[15] John McLean. Security models and information
ow. In Proc. of the 1990 IEEE Computer Society
Symposium on Research in Security and Privacy,
pages 180{187, Oakland, CA, May 1990.

[16] Catherine Meadows. Extending the Brewer-Nash
model to a multilevel context. Proc. of the 1990
IEEE Symposium on Research in Security and
Privacy, pages 95{102, May 1990.

[17] Ira S. Moskowitz. Quotient states and probabilis-
tic channels. In Proc. of The Computer Security
Foundations Workshop III, pages 74{83, Franco-
nia, NH, June 1990.

[18] Ira S. Moskowitz and Allen R. Miller. The channel
capacity of a certain noisy timing channel. IEEE
Transactions on Information Theory, 38(4):1339{
1344, July 1992.

[19] M.O. Rabin and D. Scott. Finite automata and
their decision problems. IBM Journal, pages 114{
125, April 1959.

7

[20] Claude E. Shannon and Warren Weaver. The
Mathematical Theory of Communication. Univer-
sity of Illinois Press, Urbana, IL, 1949. Also ap-
peared as a series of papers by Shannon in the
Bell System Technical Journal, July 1948, Octo-
ber 1948 (A Mathematical Theory of Communica-
tion), January 1949 (Communication in the Pres-
ence of Noise).

[21] David Sutherland. A model of information. In
Proc. of the 9th National Computer Security Con-
ference, pages 175{183, September 1986.

[22] J. Todd Wittbold. Controlled signalling systems
and covert channels. In Proc. of The Computer
Security Foundations Workshop II, pages 87{104,
Franconia, NH, June 1989.

8

